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UNSTEADY MOTION OF A MAXWELLIAN FLUID DROPLET

IN A MAXWELLIAN MEDIUM UNDER THE ACTION

OF MONOTONIC AND PERIODIC FORCES

UDC 532.135S. V. Osipov

Unsteady motion of a Maxwellian fluid droplet, which arises in a quiescent Maxwellian medium under
the action of monotonic and periodic forces, is considered. In the initial period of time smaller than
the relaxation time, the droplet is affected by elastic forces on the part of the fluid; moreover, the
droplet itself is a viscoelastic material. A solution of the problem in the first approximation is found.
The dependence of the amplitude of droplet velocity and the shift of the phase of oscillations on the
relaxation time of the external and internal media and also on the frequency of oscillations of the
driving force is analyzed. The passage to the limit in terms of density and viscosity of the internal
medium is performed.
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Introduction. The motion of liquid droplets, solid particles, and gas bubbles in a viscous incompressible
fluid has been considered in many papers. The behavior of droplets and bubbles under the action of thermocapillary,
buoyancy, and periodic forces has been studied in much detail (see, e.g., [1, 2]). It seems of interest to consider the
droplet behavior in other, more complicated media. In the present work, we consider the motion of a droplet, a
bubble, and a solid sphere in a viscoelastic medium. In particular, the case of a Maxwellian fluid or a Maxwellian
body is described.

Mathematically, the Maxwellian model is described by an equation of state of the form [3]

Trel
d̃P

dt
+ P = −pI + 2µD,

where P is the stress tensor, d̃P/dt = dP/dt + P ·W + (P ·W )t, W = (∇v − ∇vt)/2 is the Jaumann derivative
providing invariance with respect to rotation, D is the strain-rate tensor, p is the pressure, t is the time, and v is the
velocity. The magnitude of the relaxation time Trel, which determines the behavior and properties of the medium,
is important here. If the test duration is rather short (t� Trel), the Maxwellian body behaves as the Hooke’s solid;
for Trel � t, the material is the Newtonian fluid.

This property of the Maxwellian medium allows one to use this model to study amazing phenomena similar
to those observed in the experiments of [4, 5], where the behavior of two spherical disperse elements (droplets in
a low-viscosity liquid matrix, solid particles in a high-viscosity liquid matrix, or air voids in a viscoelastic gel)
was considered. It was found that two or more disperse elements being completely isolated from external force,
temperature, and concentration fields and being located at distances of the order of their size, are mutually attracted
until a complete contact (coagulation) occurs. As was demonstrated in the experiments of [6, 7], if the shear stresses
are very low (τ < τ∗), polar fluids behave as elastic bodies with a certain yield strength τ∗, and a transition to the
plasticity mode is observed at τ > τ∗. Thus, the medium first behaves as an elastic body and then passes to the
state of a Maxwellian body. With allowance for this fact, we can formulate the following problem. A viscoelastic
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Maxwellian medium contains a spherical disperse element, and a certain body force is acting on this element. The
present study is aimed at determining the velocity and pressure fields.

In the general case, the fluid viscosity is a variable quantity; as the relaxation time is Trel = µ/G, where G is
the dynamic shear modulus and µ is the viscosity, it is also a time-dependent quantity. Thus, these characteristics
of the medium can take different values. Yet, these parameters remain almost unchanged if the strain rate is rather
low, and they can be considered as constants.

The shear stress relaxes with time, and the Maxwellian model starts to describe a conventional Newtonian
fluid. To avoid this, one can reasonably consider another, nonmonotonic type of driving forces to study the
Maxwellian medium properties. The present paper describes the solution of the problem of motion of a Maxwellian
fluid droplets in a viscoelastic medium under the action of periodic forces. A necessary condition is commensurable
values of the relaxation time of the medium and the period of oscillations. For many viscoelastic bodies, the value
of Trel lies within the interval from 10−3 to 10−1 sec; hence, the oscillation frequency in this case should be about
101 to 103 Hz. Low values of oscillation frequency do not allow one to detect shear elasticity, and the equation of
state will be too cumbersome in terms of mathematics.

Information about the Maxwellian fluid properties can be found in [3, 8, 9].
1. Formulation of the Problem. We have to find a surface Γt that divides the space R3 into a bounded

simply connected domain Ω+ and its supplement Ω− = R3 \Ω+, the fields of velocities v and pressures p depending
on the time t and spatial coordinates x and satisfying the system of equations

∂v

∂t
+ v · ∇v =

1
ρ

divP + g, ∇ · v = 0,

Trel
d̃P

dt
+ P = −pI + 2µD,

(1)

the conjugation conditions

[P · n]± = σKn,

Vn = v · n, [v]± = 0 on Γt,

the condition at infinity
v → 0 as |x| → ∞

and the initial conditions
v = 0, Γt = Γ0 = {x: |x| = a}, P = P0 for t = 0.

Here, the density ρ and viscosity µ = ρν are piecewise-constant functions with a discontinuity surface Γt, ν is the
kinematic viscosity, σ is the surface-tension coefficient, P is the stress tensor, D(v) is the strain-rate tensor, K is
the half-sum of the principal curvatures of the surface Γt (trace of the curvature tensor), Vn is the velocity of motion
of the surface Γt along the normal n external to Ω+, and [f ]± = f+−f− (f± are the limiting values of the function
f(x, t) for x tending from Ω± to a point of the surface Γ, respectively).

It is seen from the boundary conditions that the velocity fields are continuous when passing through Γt,
whereas the fields of pressure and shear stresses have a discontinuity on this surface. As a result, external body
forces initiate the droplet motion. The density of these forces g(t) = (0, 0, g(t)) is prescribed, and we assume that
g(0) = 0. The problem of droplet acceleration in a viscous fluid under the action of thermocapillary and body forces
was solved in [2].

2. Simplifying Assumptions. We pass to a coordinate system fitted to the center of mass of the droplet
moving in the original system with a velocity u(t) = (0, 0, u(t)), i.e.,

x′ = x−
t∫

0

u(t) dt, t′ = t.

We introduce new unknown functions

v′ = v − u, P ′ = P + ρx′(g − u̇(t))I,

p′ = p− ρx′[g + Trelġ − u̇(t)− Trelü(t)].
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In the new variables, system (1) transforms to a system of the following form:

∂v′

∂t′
+ v′ · ∇v′ =

1
ρ

divP ′, ∇ · v′ = 0,

Trel

{∂P ′
∂t′

+ v′ · ∇P ′ − ρv′(g − u̇(t)) + (P ′ − ρx′(g − u̇(t))) ·W (2)

+ ((P ′ − ρx′(g − u̇(t))) ·W )t
}

+ P ′ = −p′I + 2µD′.

It is important to note that the first equation of system (2) is invariant with respect to this transformation.
We choose the quantities a, a2/ν−, a2g0/ν

−, and ρ−ag0 as the scales of length, time, velocity, and pres-
sure, respectively, where a is the droplet radius at the initial time and g0 is a certain “mean” acceleration. The
dimensionless equations of motion with omitted primes acquire the form

∂v

∂t
+Mv · ∇v =

ρ−

ρ
divP, ∇ · v = 0,

T
{∂P
∂t

+M
(
v · ∇P − ρ

ρ−
v(g − u̇(t)) + (P − ρx(g − u̇(t))) ·W

+ ((P − ρx(g − u̇(t))) ·W )t
)}

+ P = −pI + 2
µ

µ−
D,

where M = a3g0/(ν−)2 and T = (ν−/a2)Trel.
We assume that a3g0 � (ν−)2 and ρ−ag0 � σ/a. The first relation ensures the smallness of the parameterM ,

and the second one is necessary for capillary forces to significantly prevail over pressure. In this case, the droplet
can retain an almost spherical shape. Formally decomposing the functions v, p, and P into series in terms of M ,
we obtain the following problem with M = 0 as the first approximation:

∂v

∂t
=
ρ−

ρ
divP, ∇ · v = 0,

T
∂P

∂t
+ P = −pI + 2

µ

µ−
D,

[P · n]± = 2σ/(ag0) · n, (3)

v+ · n = 0, v− · n = 0, v+ · τ = v− · τ on Γ,

v + u → 0, |x| → ∞,

v = 0, u = 0, u̇ = 0, t = 0.

This problem admits an exact solution with a spherical interface Γt = Γ = {x: |x| = 1}. Here, τ is a vector
tangential to Γ.

We determine the Laplace transformation by the formula

A∗(s) =

∞∫
0

A(t) e−st dt

and apply it to each equation in system (3). By virtue of initial data, we obtain

sv∗ = (ρ−/ρ) divP ∗; (4)

(Ts+ 1)P ∗ = −p∗I + 2(µ/µ−)D∗. (5)

Substituting (5) into (4) and denoting α± = 1/(T±s+1), where T+ and T− are the relaxation times for the internal
and external fluids, respectively, we obtain the following equation:

sv∗ = α(ρ−/ρ)(−∇p∗I + (µ/µ−)∆v∗). (6)
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The conjugation conditions for P become

[(−α+p+ + α−p−)∗ − (ρ0 − 1)x3(g∗ − su∗)]n + 2(α+µ0D∗(v+) · n− α−D∗(v−) · n) = 2σ/(ag0s) · n,

where ρ0 = ρ+/ρ−, ν0 = ν+/ν−, and µ0 = ρ0ν0.
Let (r, ϕ, θ) be a spherical coordinate system. We seek for the solution under the assumption of axial

symmetry. We introduce the function ψ∗(r, θ, s) by the equalities

v∗r = − 1
r2 sin θ

∂ψ∗

∂θ
, v∗θ =

1
r sin θ

∂ψ∗

∂r
.

Then, system (6) is written as

α
ρ−

ρ

∂p

∂r
=

1
r2

∂

∂ξ

{ ν

ν−
αE2ψ∗ − sψ∗

}
,

α
ρ−

ρ

∂p

∂ξ
= − 1

1− ξ2
∂

∂r

{ ν

ν−
αE2ψ∗ − sψ∗

}
,

where E2 =
∂2

∂r2
+

1− ξ2

r2
∂2

∂ξ2
and ξ = cos θ. Correspondingly, the components of the transformed stress tensor in

terms of ψ∗ have the form

P ∗rθ = − µ

µ−
α

(1− ξ2)1/2

[
E2ψ∗ − 2r

∂

∂r

(1
r

∂ψ∗

∂r

)]
,

∂

∂ξ
P ∗rr =

µ

µ−
∂

∂r

[ 1
1− ξ2

(
αE2ψ∗ − ν−

ν
sψ∗

)
+

2α
r2

∂2ψ∗

∂ξ2

]
.

As a result, we have the following problem for the functions ψ∗ and u∗:

E2[ν0α+E2ψ∗ − sψ∗] = 0 for r < 1,

E2[α−E2ψ∗ − sψ∗] = 0 for r > 1;
(7)

ψ∗+ = 0, ψ∗− = 0, ψ∗+r = ψ∗−r ,

α0µ0(ψ∗rr − 2ψ∗r )+ − (ψ∗rr − 2ψ∗r )− = 0 for r = 1;
(8)

ψ∗r
r
→ u∗(1− ξ2),

ψ∗ξ
r2

→ −u∗ξ as r →∞; (9)

(ρ0 − 1)(su∗ − g∗) + µ0 ∂

∂r

{αE2ψ∗ − ν0−1
sψ∗

1− ξ2
+

2
r2
αψ∗ξξ

}+

− ∂

∂r

{αE2ψ∗ − sψ∗

1− ξ2
+

2
r2
αψ∗ξξ

}−
= 0 for r = 1. (10)

Equation (10) was obtained by differentiating the dynamic condition in terms of ξ. This does not expand the class of
solutions because the pressure outside and inside the droplet is determined from the stream function with accuracy
to an additive constant.

3. Solution of the Problem. We seek for the solution in the form

ψ∗(r, ξ, s) = rf∗(r, s)(1− ξ2).

Correspondingly, we rewrite problem (7)–(10) in terms of an operator L such that L2 =
1
r2

∂

∂r

(
r2
∂

∂r

)
− 2
r2

:

L2[ν0αL2f∗ − sf∗] = 0 for r < 1,

L2[αL2f∗ − sf∗] = 0 for r > 1;
(11)

r = 1: f∗+ = 0, f∗− = 0, f∗+r = f∗−r , α0µ0f∗+rr − f∗−rr = 0; (12)
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r →∞: f∗r → u∗/2, f∗/r → u∗/2; (13)

r = 1: (1− ρ0)(su∗ − g∗) + [αf∗rrr + αf∗rr − (s+ 6α)f∗r ]− = µ0[αf∗rrr + αf∗rr − (s/ν0 + 6α)f∗r ]+. (14)

From the integral identity
1∫

0

(L2ω)r3 dr = r2(rωr − ω)10

with the function ω = L2f∗ − (s/(ν0α))f∗, we can readily find that the right side of Eq. (14) equals zero. Thus,
condition (14) is simplified:

(1− ρ0)(su∗ − g∗) + {αf∗rrr + αf∗rr − (s+ 6α)f∗r }− = 0 at r = 1. (15)

The parameter L2 obeys the relation

L2ϕ = (1/r)£2rϕ,

where £2 = ∂2/∂r2 − 2/r2. Hence, the equation

L2[ναL2f∗ − sf∗] = 0

can be rewritten as

£2[να£2rf∗ − srf∗] = 0.

Its general solution has the form

f∗ = c1r +
c2
r2

+
1
r

[
c3 erb

(
b− 1

r

)
+ c4 e−rb

(
b+

1
r

)]
,

where b2 = s/(να). After simple transformations, with allowance for boundedness of the velocity field at r = 0 and
condition (13), the solution of Eqs. (11) can be presented in the form

f∗(r, s) = C1F (βr) + C2r, r < 1,

f∗(r, s) = u∗r/2 + C3/r
2 + C4G(γr), r > 1,

where F (z) = d(sinh z/z)/dz, G(z) = d(e−z /z)/dz, β =
√
s/(ν0α+), and γ =

√
s/α−. The functions

C1(s), . . . , C4(s) are determined from Eqs. (12). As a result, we obtain

f∗(r, s) =
3(1 + γ)u∗(s)/2
3 + γ + µ0H(β)

F (βr)− F (β)r
βF ′(β)− F (β)

, r < 1,

f∗(r, s) = −3(2 + µ0H(β))u∗(s)/2
3 + γ + µ0H(β)

eγ
(
G(γr)− G(γ)

r2

)
+

1
2
u∗

(
r − 1

r2

)
, r > 1.

Here, H(z) =
z2F ′′(z)

zF ′(z)− F (z)
=
z(z2 + 6)− 3(z2 + 2) tanh z

(z2 + 3) tanh z − 3z
. Then, from Eq. (15), after cumbersome calculations,

we find

u∗(s) =
(ρ0 − 1)g∗(s)

(1/2 + ρ0)s+ α−B∗(s)
, (16)

where

B∗(s) =
3
2
(2 + µ0H(β))C∗(s), C∗(s) =

3(1 +
√
s/α−)

3 +
√
s/α− + µ0H(β)

.

The following asymptotic formulas are valid:

H(z) = 3 + z2/7 +O(z4), z → 0,

H(z) = z + 3/z +O(1/z3), z →∞,
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B∗(0) =
3(2 + 3µ0)
2(1 + µ0)

, B∗(s) ≈ 9ρ0
√
ν0T 0

2(1 + ρ0
√
ν0T 0)

√
s(T−s+ 1), s→∞

(T0 = T+/T−). The function B∗(s) can be represented as B∗(s) = B∗(0) + sb∗(s), where the principal terms in
the expansion b∗(s) in the vicinity of zero and infinity have the form

b∗(s) ≈ 1
2

(2 + 3µ0

1 + µ0

)2
√
T−s+ 1

s
, s→ 0,

b∗(s) ≈ 9ρ0
√
ν0T 0

2(1 + ρ0
√
ν0T 0)

√
T−s+ 1

s
, s→∞.

We rewrite Eq. (16) in the form

(1/2 + ρ0)(T−s+ 1)su∗ +B∗(0)u∗ + sb∗(s)u∗ = (ρ0 − 1)(T−s+ 1)g∗(s).

Obviously, su∗(s) is the image of u′(t). The expression sb∗(s)u∗(s) is the image of

t∫
0

u′(t1)b(t− t1) dt1. Indeed, we

have

sb∗(s)u∗(s) = s

∞∫
0

b(t) e−st dt

∞∫
0

u(t1) e−st1 dt1

=

∞∫
0

b(t− t1) e−s(t−t1) d(t− t1)

∞∫
0

u′(t1) e−st1 dt1

=

∞∫
0

t∫
0

b(t− t1)u′(t1) e−s(t−t1) e−st1 dt1 dt =

∞∫
0

t∫
0

b(t− t1)u′(t1) dt1 e−st dt.

Thus, Eq. (16) yields the integrodifferential equation(1
2

+ ρ0
)
[T−u′′(t) + u′(t)] +B∗(0)u(t) +

t∫
0

u′(t1)b(t− t1) dt1 = (ρ0 − 1)(T−g′(t) + g(t)). (17)

Directing T+ and T− to zero, we use Eq. (16) or (17) to obtain a velocity equal to that for the Newtonian fluid [2].
Let the function g(t) have a limit as t→∞. Then, by virtue of the equality

lim
t→∞

u(t) = lim
s→0

su∗(s)

Eq. (16) yields the formula for the limiting velocity:

lim
t→∞

u(t) = lim
s→0

(ρ0 − 1)sg∗(s)
(1/2 + ρ0)s+ α−B∗(s)

=
2(1 + µ0)
3(2 + 3µ0)

(ρ0 − 1) lim
t→∞

g(t).

The resultant expression exactly coincides with the velocity of droplet motion under the action of buoyancy
forces, which is obtained by the Hadamard–Rybchinskii formula [10]. Naturally, this result is independent of the
relaxation time Trel. This agrees with the physical laws that describe the behavior of the Maxwellian fluid.

4. Transition to the Differential Equation. In some limiting cases, we can pass from Eqs. (16), (17)
to the differential equation. We consider the motion of a gas bubble in the Maxwellian fluid in the case the system
experiences some impact or push. Let µ0 = 0 and g(t) = t e−t, which corresponds to g∗(s) = 1/(s+ 1)2. Equation
(16) takes the form

[(1/2 + ρ0)s(T−s+ 1)(3 +
√
s(T−s+ 1) ) + 9(1 +

√
s(T−s+ 1) )]u∗(s)

= (T−s+ 1)(3 +
√
s(T−s+ 1) )(ρ0 − 1)/(s+ 1)2 ≡ q∗(s).

Multiplying both parts of the equality by

r∗(s) = (1/2 + ρ0)s(T−s+ 1)(
√
s(T−s+ 1)− 3) + 9(

√
s(T−s+ 1)− 1)
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and introducing the notation

P ∗(s) = (1/2 + ρ0)2s2(T−s+ 1)2(s(T−s+ 1)− 9)

+ 18(1/2 + ρ0)s(T−s+ 1)(s(T−s+ 1)− 3) + 81(s(T−s+ 1)− 1)

or

P ∗(s) = (1/2 + ρ0)2(T−)3s6 + 3(1/2 + ρ0)2(T−)2s5 + (18(1/2 + ρ0)(T−)2 + 3(1/2 + ρ0)2T−

−9(1/2 + ρ0)2(T−)2)s4 + (36(1/2 + ρ0)T− + (1/2 + ρ0)2 − 18(1/2 + ρ0)2T−)s3

+(−9(1/2 + ρ0)2 + 9 + 18ρ0 − 54(1/2 + ρ0)T− + 81T−)s2 + (54− 54ρ0)s− 81,

we obtain

P (s)u∗(s) = F ∗(s), F ∗(s) = r∗(s)q∗(s).

Finally, we can readily pass to the sixth-order differential equation

P
( d

dt

)
u(t) = F (t),

where F (t) is the original of the image F ∗(s). A question arises on the initial data for deriving this equation. They
can be determined using the inverse Laplace transform for decomposing the function u∗(s) into a Taylor series at
infinity. We have

u∗(s) =
a3

s3
+
a4

s4
+
a5

s5
+
a6

s6
+O

( 1
s7

)
,

where

a3 =
ρ0 − 1

1/2 + ρ0
, a4 =

−2ρ0 + 2
1/2 + ρ0

, a5 =
3ρ0 − 3− 18(ρ0 − 1)/((1 + 2ρ0)T−)

1/2 + ρ0
,

a6 =
2(ρ0 − 1)(36/

√
T− + 18/T− − 8T−(1 + 2ρ0) + 36)

(1 + 2ρ0)2T−
.

We denote the inverse Laplace transform by Z−1. Then, we have Z−1[1/sn] = tn−1/(n − 1)!, whence we obtain
u(t) = a3t

2/2 + a4t
3/6 + a5t

4/24 + a6t
5/120 +O(t6). As a result, we determine the additional initial data

u′′(0) = a3, u′′′(0) = a4, uIV (0) = a5, uV (0) = a6.

Similar reduction is performed for a solid sphere with µ0 = ∞. In this case, Eq. (16) acquires the form

[(1/2 + ρ0)s(T−s+ 1) + (9/2)(1 +
√
s(T−s+ 1) )]u∗(s) = (T−s+ 1)(ρ0 − 1)/(s+ 1)2 ≡ q∗(s).

The regularized symbol is the expression r∗(s) = (1/2 + ρ0)s(T−s+ 1)− (9/2)(
√
s(T−s+ 1)− 1).

5. Motion under the Action of Periodic Body Forces. Now we consider the problem of droplet
motion arising under the action of periodic forces. For instance, such an action is very important inside a spacecraft
in the absence of gravity. Problems of this type are called “g-jitter” problems.

We assume that g(t) = A eiωt. In this case, the functions u, v, P , and p can be found in the form

u = Re û eiωt, v = Re v̂ eiωt, P = Re P̂ eiωt, p = Re p̂ eiωt .

Substituting these expressions into the system of equations of motion and state (3) and omitting the hats,
we obtain the following equations:

iωv = (ρ−/ρ) divP ; (18)

(iωT + 1)P = −pI + 2(µ/µ−)D. (19)

Substituting (19) into (18) and denoting α̂± = 1/(T±s+ 1), we obtain

iωv = α̂(ρ−/ρ)(−∇pI + (µ/µ−)∆v).
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The conjugation conditions for P acquire the form

{(−α̂+p+ + α̂−p−)− (ρ0 − 1)x3[A− iωu]}n

+ 2(α̂+µ0D(v+) · n− α̂−D(v−) · n) = −2iσ/(ag0ω) · n,

where ρ0 = ρ+/ρ−, ν0 = ν+/ν−, and µ0 = ρ0ν0.
Introducing a spherical coordinate system and applying a procedure similar to solving the problem with a

monotonic function g(t), we obtain the expression for velocity:

u(t) = ReU(t), U(t) =
(ρ0 − 1)A eiωt

(1/2 + ρ0)iω + α−B̂(iω)
. (20)

Passing to the limit in terms of density and viscosity, we can easily obtain the velocity of a gas bubble or a
solid sphere from Eq. (20).

It seems of interest to analyze the dependence of the droplet velocity and the shift of the phase of oscillations
on parameters of the relaxation time Trel of the external medium and droplet. To construct these dependences,
we theoretically vary the properties or types of fluids so that the relaxation time changes and the other properties
remain intact. As a “reference point,” we consider a 0.5% solution of polyacrylamide. This solution is a typical
representative of the Maxwellian fluid with a rather long relaxation time (from 0.1 to 5 sec). Its dynamic viscosity
is µ = 5 P.

Figures 1 and 2 show the amplitudes of velocity u = |U(t)| and the shift of the phase of oscillations of the
droplet ϕ = argU(t), respectively (the velocity is measured in hundredths of cm/sec). The frequency of oscillations
of the driving force is ω = 500 Hz and the amplitude of acceleration is g = 5 cm/sec2, which is almost 200 times
smaller than the acceleration of gravity on the Earth’s surface; the ratio of densities of the internal and external
fluids is ρ0 = 2, and the ratio of dynamic viscosities is µ0 = 4. It is seen that the dependence of the examined
quantities on the relaxation time of the external fluid is more pronounced. In addition, as the relaxation time
of the external fluid T e

rel increases, the influence of the relaxation time of the internal fluid T i
rel on the motion

pattern decreases. An interesting and unexpected result was the presence of peaks and valleys in all graphs. At
the moment, this fact has not been adequately explained, but apparently, it is a consequence of the resonance of
intrinsic oscillations of the droplet and oscillations of the driving force.

Now we consider the relaxation time of the external fluid T e
rel and the frequency ω as parameters. We fix

the value T i
rel = 0.1 sec.

In this case (Fig. 3), if the oscillation frequency is rather low (about 100 Hz), the droplet velocity amplitude
increases with increasing relaxation time of the medium T e

rel. As the frequency increases to 500 Hz, this dependence
is no longer valid, and the value of T e

rel has almost no effect on the droplet velocity. For ω ≈ 100 Hz, the shift of the
phase of oscillations is close to zero (Fig. 4). For ω = 300 Hz and higher, vice versa, the phase shift reaches π/2.
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Note, both plots become less “hump-backed” with increasing T e
rel, which indicates that the relative influence of T i

rel

becomes less pronounced.
Figures 5 and 6 show the dependences of the examined quantities on the relaxation time of the internal fluid

and on the frequency of oscillations of the external force (T e
rel = 0.1 sec). Obviously, the relaxation time of the

external medium has a greater effect on the flow pattern.
Figures 7 and 8 show the velocity amplitude as a function of the relaxation time of the external medium

and on the frequency of oscillations of the driving force for the cases of motion of a solid sphere and a gas bubble,
respectively.
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